
Mika

User Manual
Version 1.2.1

Midoan Software Engineering Solutions Ltd.

October 2010

Copyright c©2010 Midoan Software Engineering Solutions Ltd.

Permission is granted to make and distribute verbatim copies of this manual provided
the copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under
the conditions for verbatim copying, provided that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another
language, under the above conditions for modified versions, except that this permis-
sion notice may be stated in a translation approved by Midoan Software Engineering
Solutions Ltd.

Abstract

Mika is an automatic test inputs generation tool for code written in a subset
of Ada 83, Ada 95 or Ada 2005. Mika uses genetic algorithms to generate inter-
subprograms test inputs that will, by construction, exercise, during execution,
the maximum possible number of branches, decisions or MC/DCs, in the code
under test.

Keywords: Automatic Test Inputs Generation, MC/DC, Unit Testing, Integration
Testing, Ada, Spark Ada;

1

Contents

1 Introduction 3

2 Requirements 4

3 Installation 4

4 Ada Subset 4

5 Limitations 5
5.1 Complexity Limitations . 5
5.2 Accuracy Limitations . 6
5.3 Miscellaneous Limitations . 6

6 The GUI Front End 6
6.1 GUI Area 1: Drive and Folder Choosing 7
6.2 GUI Area 2: Package, Subprogram and Test File Choosing 7
6.3 GUI Area 3: Parsing . 7
6.4 GUI Area 4: Test Inputs Generation 8
6.5 GUI Area 5: Progress . 10
6.6 GUI Area 6: File View . 10

7 The Tools Back End 10
7.1 The mika ada parser Parser Tool . 10

7.1.1 Basic Syntax . 10
7.1.2 Optional Switches . 11
7.1.3 Outputs . 12
7.1.4 Usage . 12

7.2 The mika ada generator Test Inputs Generator 12
7.2.1 Basic Syntax . 12
7.2.2 Optional Switches . 13
7.2.3 Outputs . 14
7.2.4 Usage . 14

8 Examples 14

9 Feedback and Bug Reports 14

10 References 15

2

1 Introduction

Mika is a new generation testing tool; in fact we believe that it is the first tool of its
kind for industrial code written in a professional programming language.

Mika generates test inputs that will achieve, when executed, the highest possible
branch, decision or MC/DC coverage of your code.

Mika does not generate a large number of test inputs, nor any random test inputs,
to achieve its aim: each test input is carefully constructed to exercise a previously
uncovered decision, branch or MC/DC in the code under test.

Mika offers, for the first time, the possibility to automatically generate test inputs
to achieve maximum possible coverage of the source code under test: the only necessary
input is the original source code. There are no annotations, no testing scripts to write.

Mika can generate under ten minutes a small set of test inputs from subprograms
that may lead to the execution of 100 000s of line of code. The test inputs generated
are aimed at achieving the highest possible code coverage of the subprogram under test
and of all the subprogram it itself calls.

Mika works for a substantial subset of Ada that largely encompasses the SPARK
Ada subset [1]: if you have SPARK Ada like code (Mika does not rely on annotations)
Mika should be able to automatically generate targeted test inputs using the source
code as-is.

Mika has been designed to leave your original code and the containing folders un-
touched: your code will not be modified in any way during the test inputs generation
process.

Mika has been designed to be as simple as possible to use: pick the file containing
the Ada subprogram you wish to generate test inputs for, pick the subprogram and
click the generate test inputs button. You should be able to evaluate the suitability of
Mika for your own circumstances in minutes.

Mika does not aim to replace traditional well established coverage testing tools: its
main functionality is the automatic creation of purpose-built test inputs that should,
by construction, achieve the highest possible level of coverage of your source code. It
replaces a manual process. These test inputs can serve as input into traditional tools
to certify the level of testing coverage achieved.

Mika replaces the tedious, expensive, time-consuming, error prone and usually in-
complete, process of manual test inputs creation.

Mika can generate test inputs that exercise called subprograms as thoroughly as the
caller subprogram: the test inputs it generates are not just unit tests; they can be used
for integration testing purposes.

Mika is not a static analysis tool: no false positive are ever generated. The test
inputs it produces are complete and directly executable.

Mika provides, at no extra cost, the predicted outputs that will be generated by the
code under test given the test inputs generated: you can validate the behaviour of your
code without having to actually execute it if you wish and thus obtain test cases.

Mika provides, with very little additional overheads, an automatically generated

3

test driver that uses the test inputs automatically generated. This test driver can be
compiled and run automatically immediately, or later on for regression testing purposes.

2 Requirements

• Microsoft Windows XP (Mika is untested for other Operating Systems) with .NET
v2.0 or above installed;

• A working installation of the GNAT Ada compiler (e.g. GNAT Pro, GNAT GPL,
MinGW’s GNAT).

3 Installation

Download the Setup Mika.msi file from http://www.midoan.com/download/current/

Setup_Mika.msi and run it. Follow the installation process and first use configuration
dialogs. This process is illustrated by a white paper [2] and supporting video [3].

4 Ada Subset

General remarks that should be kept in mind when considering the subset handled by
Mika:

1. There are no theoretical limits on the type of constructs that Mika could handle:
future versions of Mika will tackle larger Ada subset (see the release notes [4] for
past subset enlargement);

2. Typically, if your code contains a construct that Mika does not handle, a warn-
ing will be issued and the construct will be ignored: the test inputs generation
process will continue. The test inputs generated may still achieve the level of
coverage predicted, the predicted behaviour may still be correct: these should
always be confirmed using a third party code coverage tool (possibly using Mika’s
automatically generated test driver as input);

Static and dynamic code analysis tools often silently ignore some constructs in the
code under consideration; we describe below the Ada subset handled by Mika:

1. The subset is based on Ada 2005;

2. Ada tasks are not handled;

3. Access types are not handled;

4. Exceptions are not handled;

4

http://www.midoan.com/download/current/Setup_Mika.msi
http://www.midoan.com/download/current/Setup_Mika.msi

5. Tagged types are not handled;

6. Generic Packages are not handled;

7. Address clauses are not handled;

8. Machine code insertions are not handled;

9. Discriminated record types are not handled;

10. Records with variant parts are not handled;

11. Bitwise operators on one dimensional Boolean arrays are not handled;

12. Use of predefined libraries subprogram is limited.

Handled features of note:

1. Mika does not put any restrictions on scope, visibility, renaming and overloading
rules for the code under test;

2. Unconstrained arrays are handled;

3. Recursion is handled;

4. Default expressions of record components, subprogram parameters are handled;

5. The Ada subset handled by Mika fully subsumes the SPARK Ada subset (but
does require any annotations).

5 Limitations

Because of its nature, Mika may not be able to handle code of arbitrary complexity
within a reasonable time with the memory at its disposal. Limitations are common
place in static and dynamic code analysis tools, but often hidden; we describe below
Mika’s limitations.

5.1 Complexity Limitations

The complexity of the control flow graph of the code under test, the size of the data
structures handled and the deepness of the coverage desired have a direct impact on
Mika’s ability to generate test inputs within a reasonable time and within the memory at
its disposal. While Mika can handle very large amounts of linear code (100 000s lines),
subprogram calls and bounded loops on simple data structures without problems, the
following aspects of the code under test may have a negative impact on Mika’s run-time
and/or make Mika reach its memory limitations:

5

1. Large data structures handling (e.g. array objects with more than 1 000 elements).

It is difficult to offer a more precise picture of Mika’s complexity limitations. Limita-
tions are being removed as new versions come on stream (e.g. since version 1.2, input
dependent dynamic types no longer have a significant impact on the run-time of Mika);
see the release notes for past improvements. Mika has been designed to produce results
within the reasonable time of the order of minutes: it is not uncommon for the compi-
lation time of the automatically generated test driver to be much larger than the test
inputs generation process time itself.

5.2 Accuracy Limitations

The following accuracy limitations are part of Mika:

1. Very large integers are not always handled accurately;

2. Very large floating point numbers are not always handled accurately;

3. Floating point numbers representation is approximate;

4. Boolean operators on arrays of Booleans are not handled accurately;

5. Overloading of Boolean operators with non Boolean returning operators are not
handled accurately;

6. Wide Characters are modelled using Characters;

7. Intrinsic subprograms are not all handled accurately.

These accuracy limitations imply that, on occasions, the predicted coverage by Mika
will not be achieved during actual execution, that the expected outcome will differ or
that the optimal coverage will not be achieved.

5.3 Miscellaneous Limitations

Currently include:

1. Subprograms local to another subprogram cannot be directly tested.

6 The GUI Front End

Mika can be used via the simple GUI front end or, as detailed in the next section,
via the command line (for easier integration with your favourite IDE and/or for use in
batch mode).

The GUI is divided into 6 main areas:

6

6.1 GUI Area 1: Drive and Folder Choosing

This where you may pick the folder containing the code you wish to test. Mika searches,
in the background, the contents of the chosen folder for Ada source code containing
packages (.ads and .adb files) and displays the results in the area 2.

6.2 GUI Area 2: Package, Subprogram and Test File Choosing

The names of the top most packages contained in the chosen folder are displayed. If a
package has never been parsed, its background appears transparent; if it has already
been parsed but is out of date (i.e. it probably needs re-parsing unless the changes made
on the source code have no semantics consequences) its background appears blue; finally
if the package has already been parsed and is up-to-date, its background appears green.
In any case, an already parsed subprogram can be expanded to reveal its subprograms
(and the elaboration only test inputs generation option). Previous test inputs for a
given subprogram can be further expanded and viewed.

By right clicking on a previous test inputs file in this area, you can recompile and
re-run the previous, automatically generated, test driver for these test inputs and thus
perform regression testing.

Once a package file has been selected its containing file is displayed in area 6;

6.3 GUI Area 3: Parsing

A package that has not yet been parsed needs parsing. Note that the parser will re-
compile your files if they are out-of-date, prior to its own processing. Default switches
for the compiler are displayed and can be modified manually. For example, you can
specify the path of the original gnat.adc file by adding -gnatec="C:\foo\gnat.adc"

7

to the gnatmake switches box on the GUI (do not forget to add it also to the test driver
switches box if you wish to compile the auto generated test driver). The Reset button
uses the settings set via the Options->Set Default Switches... to reset the parser
switches of the current package under test. The Clear button allows erasing of previous
parsing outcomes for the package under test. The Parse button parses the file where
the chosen package is to be found. Progress is shown in the area 5. The path to the
compiler can be set via Options->Set Working Directory....

6.4 GUI Area 4: Test Inputs Generation

Once a subprogram has been chosen, the test inputs generation process can be cus-
tomised. Branch, Decision or MC/DC coverage can be chosen. Mika implements the
masking version of MC/DC [5].

The calling context of the subprogram can also be ignored by ticking the Ignore

Context option (in other words the initialisations performed during the elaboration
process are ignored) or taken into account. If the context is taken into account, the
test inputs generated will be after the outcome of the elaboration phase of the package
containing the subprogram under test. In other words, the elaboration context will be
taken into account. This leads to more realistic test inputs (because real initialisations
are used), but may also lead to a lower level of coverage. On the other hand, ignoring the
elaboration context allows the generation of test inputs that overwrite the initialisations
made at elaboration time: the test inputs may be less realistic but typically will achieve
a higher level of coverage.

The Level of Coverage desired can be indicated:

• Subprogram Only : Mika will only generate test inputs to cover the subprogram
under consideration;

• Local Call Tree : Mika will generate test inputs to cover the subprogram under
consideration and also any called subprograms from the same source file;

• Entire Call Tree : Mika will generate test inputs to cover the subprogram
under consideration and also any called user written subprograms.

If the Time Stamped Directory option is chosen, the test files are created in a
new directory within the working directory whose name is time stamped. The current
working directory can be changed via Options->Set Working Directory... The time
stamped directory is thus unique and takes the form:

<subprogram name> year month day hour minutes seconds

, otherwise the directory is just <subprogram name> and previous test inputs will be
lost.

Note that if the subprogram under test is an operator the <subprogram name> is
known internally as string< ascii code>* (E.g. ”*” will be known as string 42, and
”and” will be known as string 97 110 100).

8

The Compile and Run Tests option compiles and runs the automatically generated
test driver. To avail of this option users must manually (Mika is never allowed to
automatically change user’s code) insert test points in the specification and body of the
packages under test. These test points must be of the form:

procedure Mika_Test_Point(Test_number : in Integer);

in the specification part. And:

procedure Mika_Test_Point(Test_number : in Integer) is separate;

in the body part. A file named packageName-mika test point.adb must be added in
the source folder (Mika never compromises the integrity of the original source folder:
it always works in its own working directory, never writing anything, nor modifying
anything in the original source folder). This test point file must be of the form:

separate (packageName)
procedure Mika_Test_Point(Test_number : in Integer) is
begin

null;
end Mika_Test_Point;

where packageName should be replaced by the actual package name. Test points only
need to be added if the user wishes to avail of the automatically generated test driver.
If the elaboration context is ignored, many more than just the package containing the
subprogram under test may require the manual insertion of a test point.

In addition, the automatic generation of the test driver may need some help to
produce Ada code that actually compiles. Users can add context clauses to the auto-
matically generated test points by preceding the first lines of their own corresponding
test point with --MIKA E.g. saving:

--MIKA with System; use System;
separate (Hardware)
procedure Mika_Test_Point(Test_number : in Integer) is
begin

null;
end Mika_Test_Point;

in hardware-mika test point.adb in the current working directory will ensure that
the automatically test driver will systematically contain the context: with System;

use System;. In effect, the rest of the line following --MIKA will be automatically
added at the start of the corresponding automatically generated test point.

Actual test outcomes are automatically compared against expected test outcomes.
Compilation switches for the test driver can be manually changed or reset. The
Generate Tests button generates the test inputs according to the user settings. Progress
is shown in the area 5. Actual test inputs and predicted behaviour are displayed in
area 6.

9

6.5 GUI Area 5: Progress

Warnings and errors are displayed in this area.

6.6 GUI Area 6: File View

This area contains a simple file viewer to view (but not edit, to minimise the risk of
corrupting production code) source code and generated test inputs. The generated test
inputs and predicted behaviour are contained in a file named
<file name no extension> mika tests.txt in the current working directory.

7 The Tools Back End

Mika can also be used directly via the command line. This does not provide new
functionalities, as the GUI front end offers all the functionalities of the back end tools,
but allows users to integrate Mika in their favourite environment (e.g. GPS) or to use
Mika in batch mode.

There are two tools provided:

• mika ada parser the parser tool;

• and mika ada generator, the test inputs generator tool.

7.1 The mika ada parser Parser Tool

The parser tool, mika ada parser, parses the indicated file, and all dependent files, to
produce an output suitable for the subsequent test inputs generation phase handled by
the mika ada generator tool.

Note that if the file under test, or any of its dependences, is not up-to-date, the parser
tool will compile it prior to the parsing phase proper. You can avoid this behaviour
by always ensuring that the file under test and all its dependences are up-to-date prior
to calling mika ada parser. As explained below, you can control this behaviour by
providing a GNAT project file via the -e switch and a target working directory via the
-w switch.

7.1.1 Basic Syntax

The basic syntax (note that the double quotes are actually necessary on the command
line) of the parser tool is:

mika_ada_parser -M"<full_path_of_install_dir>"
(-gnat83|-gnat95|-gnat05)
[optional_switches]
<file_name_no_extension>

10

where the order of the switches is not significant.

-M"<full path of install dir>" is compulsory and must provide the full path to
the bin directory of Mika e.g.
-M"C:\Program Files\Midoan Software Engineering Solutions\Mika\bin";

one of the Ada version switch (i.e. -gnat83, -gnat95 or -gnat05) must be provided
(even if a GNAT project file is used) to indicate the Ada standard of the file under
test;

the last argument must be the name of the file under test without extension e.g. :
oilandgasmonitoring-gasflowcalibrationcheck.

7.1.2 Optional Switches

The optional switches of the parser tool are:

-f"<full path to gnat bin>" provides the full path to bin directory of the GNAT
version you wish to use e.g. -f"F:\GNAT\2009\bin". If it is not specified, the
GNAT version reachable via your PATH environment variable is used;

-o"<full path of initial file>" provides the full path to the file under test or, if
it is used, the full path of the project file e.g. -o"F:\vv70\code". If it is not
specified, the current directory is used instead;

-w"<full path of target dir>" specifies a directory for the parser’s entire output.
If this switch is omitted the current directory is used instead. If the directory
does not exist it will be created. This switch is useful in order to specify a target
working directory;

-e"<GNAT project switches>" if a GNAT project file is necessary to compile or
browse the source and object files, this switch must be used. It should con-
tain the normal GNAT switches related to project files: -P -X etc. These will
be passed automatically to gnatmake, gnatbind or gnatls by the parser. This
switch is compulsory if a project file is present;

-a<gnatmake switches> if gnatmake needs specific switches for the file under test this
switch should be used. This switch is usually not necessary unless compilation
problems occur;

-b<gnatbind switches> if gnatbind needs specific switches for the file under test
this switch should be used. This switch is usually not necessary unless binding
problems occur;

-c<gnatls switches> if gnatls needs specific switches for the file under test this switch
should be used. This switch is usually not necessary unless browsing problems
occur.

11

7.1.3 Outputs

mika ada parser generates:

• a parsed file <file name no extension>.po in the new directory :
<full path of target dir>\<file name no extension> mika which is used by
the subsequent test inputs generation phase;

• a subprogram file <file name no extension>.subprograms in the directory
<full path of target dir> which is used by the GUI front end.

7.1.4 Usage

A typical usage example of the parser tool is:

mika_ada_parser
-M"C:\Program Files\Midoan Software Engineering Solutions\Mika\bin"
-o"F:\vv70\code" -f"F:\GNAT\2009\bin" -gnat95 -w"C:\tmp" -e"-Ptas" alarm

which generates the files alarm.po in C:\tmp\alarm mika and alarm.subprograms in
C:\tmp

7.2 The mika ada generator Test Inputs Generator

The test inputs generator, mika ada generator, generates test inputs according to the
given criteria for a specific subprogram in a previously parsed file. It does not check if
the file under test needs re-parsing.

7.2.1 Basic Syntax

The basic syntax of the test inputs generator is:

mika_ada_generator -M"<full_path_of_install_dir>"
-S<subprogram_name>
(-Tbranch|-Tdecision|-Tmcdc)
(-Cignored|-Cnot_ignored)
[optional_switches]
<file_name_no_extension>

where the order of the switches is not significant.

the -M"<full path of install dir>" switch is compulsory and must provide the
full path to the bin directory of Mika file e.g. -M"C:\Program Files\Midoan

Software Engineering Solutions\Mika\bin";

12

the -S<subprogram name> switch is compulsory and must provide the name of the sub-
program for which test inputs generation is desired e.g. -SCalcEngineCoolingAir,
the cases are not significant. To handle overloaded subprograms the optional
switch -l must also be provided. Operator subprograms may be passed as
-S"<the operator>" (e.g. -S"*" or -S"and") or as -Sstring< ascii code>*

(e.g. -Sstring 42 or -Sstring 97 110 100 respectively); in either cases the
<subprogram name> will subsequently be known internally in its ASCII form (es-
pecially for directory creation);

one of the testing strategy switch (i.e. -Tbranch, -Tdecision or -Tmcdc) must be
provided to indicate the testing criterion desired;

one of the context switch (i.e. -Cignored or -Cnot ignored) must be provided. If
the context is not ignored, the test inputs generated will be based according to
the outcome of the elaboration phase of the package containing the subprogram
under test. If the context is ignored, the effects of the elaboration phase will be
ignored. Refer to the GUI front end section for further details;

the last argument, <file name no extension>, must be the name of the file under
test without extension e.g. : oilandgasmonitoring-gasflowcalibrationcheck.
It can also be just elaboration in which case test inputs will be generated to
execute the elaboration phase only.

7.2.2 Optional Switches

The optional switches of the test inputs generator are:

the -o"<full path of parsed file>" switch provides the full path to the parsed
version of the file under test as generated by the mika ada parser tool e.g.
-o"C:\tmp\alarm mika". If it is not specified, the current working directory
is used;

-l<line number> is only used to handle overloaded subprograms. It must be used
to provide the line number of the first occurrence of the subprogram in the code
(could be in its specification or its body) e.g. -l96;

-t disables the time stamped directory feature of the output directory. Refer to the
GUI front end section for further details.

-u<S|F|A> indicates the level of coverage desired: S : Subprogram Only, F : Local Call
Tree, A : Entire Call Tree. E.g. -uF. If it is not specified -uS is the default. Refer
to the GUI front-end section for further details.

13

7.2.3 Outputs

mika ada generator generates in <full path of parsed file>\

<subprogram name> <line number> year month day hour minutes seconds

(or just in <full path of parsed file>\<subprogram name> <line number> if the
time stamped directory feature was switched off via the -t switch) :

• a test inputs result file <file name no extension> mika tests.txt which con-
tains the automatically generated test inputs and predicted behaviour of the code;

• a number of Ada files composing the automatically generated tests driver. The
main unit of the test driver is contained in the file:

mika <file name no extension> <subprogram name> driver.adb.

it can be compiled using gnatmake to generate the test driver executable. Refer
to the GUI front end section for further details (especially the requirements for
using this feature in terms of test points);

7.2.4 Usage

A typical usage example of the test inputs generator is:

mika_ada_generator
-M"C:\Program Files\Midoan Software Engineering Solutions\Mika\bin"
-Stomorrow -Tmcdc -Cignored -uF -t array_date

which generates the files array date mika tests.txt and
mika array date tomorrow driver.adb in the directory
<full path of parsed file>\tomorrow 8

8 Examples

The example directory in Mika’s installation folder contains a number of small basic
examples to experiment with if you do not have access to suitable Ada code. Feel free
to submit your own code examples to Midoan.

9 Feedback and Bug Reports

Whether you are entitled to user support under Midoan’s maintenance terms or not,
Midoan welcomes, and encourages, suggestions for improving Mika. Use the Feedback
button to access Midoan’s feature request web page from the GUI . These may include:

• enlarging OS and/or GNAT version integration;

• adding Ada features not supported in the current subset;

14

• adding finer user control of test inputs generation process;

• generating test inputs for other coverage metrics (e.g. condition coverage);

• adding new test output formats for better integration with third party tools.

This is your opportunity to guide the future development of Mika to suit your particular
needs.

Midoan will do its best to address identified bugs and issue revisions to all customers
as per the appropriate license agreement.

10 References

[1] John Barnes. High Integrity Software: The SPARK Approach to Safety and Security.
Addison Wesley, 2003.

[2] Midoan Software Engineering Ltd. Basic automatic generation of white box test
inputs from ada source code using Mika. Technical report, 2010.

[3] Midoan Software Engineering Ltd. Mika presentation page. http://www.midoan.

com/mika.html/.

[4] Midoan Software Engineering Ltd. Mika release notes. Technical report, 2010.

[5] K.J. Hayhurst, D.S. Veerhusen, J.J. Chilenski, and L.K. Rierson. A practical tutorial
decision coverage on modified condition/decision coverage. Technical report, NASA,
2001.

15

http://www.midoan.com/mika.html/
http://www.midoan.com/mika.html/

	Introduction
	Requirements
	Installation
	Ada Subset
	Limitations
	Complexity Limitations
	Accuracy Limitations
	Miscellaneous Limitations

	The GUI Front End
	GUI Area 1: Drive and Folder Choosing
	GUI Area 2: Package, Subprogram and Test File Choosing
	GUI Area 3: Parsing
	GUI Area 4: Test Inputs Generation
	GUI Area 5: Progress
	GUI Area 6: File View

	The Tools Back End
	The mika_ada_parser Parser Tool
	Basic Syntax
	Optional Switches
	Outputs
	Usage

	The mika_ada_generator Test Inputs Generator
	Basic Syntax
	Optional Switches
	Outputs
	Usage

	Examples
	Feedback and Bug Reports
	References

